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A nodal-based implementation of a stabilized finite
element method for incompressible flow problems
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SUMMARY

The objective of this paper is twofold. First, a stabilized finite element method (FEM) for the
incompressible Navier–Stokes is presented and several numerical experiments are conducted to check its
performance. This method is capable of dealing with all the instabilities that the standard Galerkin
method presents, namely the pressure instability, the instability arising in convection-dominated situa-
tions and the less popular instabilities found when the Navier–Stokes equations have a dominant
Coriolis force or when there is a dominant absorption term arising from the small permeability of the
medium where the flow takes place. The second objective is to describe a nodal-based implementation of
the finite element formulation introduced. This implementation is based on an a priori calculation of the
integrals appearing in the formulation and then the construction of the matrix and right-hand side vector
of the final algebraic system to be solved. After appropriate approximations, this matrix and this vector
can be constructed directly for each nodal point, without the need to loop over the elements, thus making
the calculations much faster. In order to be able to do this, all the variables have to be defined at the
nodes of the finite element mesh, not on the elements. This is also so for the stabilization parameters of
the formulation. However, doing this gives rise to questions regarding the consistency and the conserva-
tion properties of the final scheme, which are addressed in this paper. Copyright © 2000 John Wiley &
Sons, Ltd.

KEY WORDS: finite elements; incompressible Navier–Stokes equations; mesh graph; stabilization
methods

1. INTRODUCTION

This paper presents a finite element formulation for solving the generalized incompressible
Navier–Stokes equations, including Coriolis forces and the effect of the permeability of the
medium. The formulation is based on the sub-grid scale concept, which was introduced for
the scalar convection–diffusion equation in Reference [1] and generalized to systems of
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convection–diffusion–reaction equations in Reference [2]. This formulation applied to the
generalized Navier–Stokes equations is also presented in Reference [3], where the linearized
problem is analysed. The numerical analysis undertaken in this reference shows that the
method is optimally convergent and that it is able to deal with the instability problems of the
standard Galerkin approach. In this paper some standard benchmark problems are presented
using this formulation in situations outside the scope of the classical analysis, such as thermally
coupled flows or flow of non-linear materials. Likewise, the method is extended to transient
problems.

The numerical instabilities of the Galerkin method that the present formulation circumvents
come from very different sources. The first one is the classical inf–sup condition for the
velocity–pressure finite element interpolations, which is needed in order to have pressure
stability (see, e.g. Reference [4]). The second is also classical and concerns the oscillations
found when the flow is dominated by convection, i.e. the cell Reynolds number is large.
Finally, when the viscosity is small compared either with the Coriolis forces or with the
absorption effects coming from the medium permeability, numerical oscillations may also
appear (see Reference [3] for a more detailed description of the instabilities arising in these
cases). The stabilized formulation presented here is able to deal with all these numerical
problems, allowing in particular the use of equal velocity–pressure interpolation, assumed
throughout in the paper. The idea of using a stabilized method able to deal with the pressure
instability and convection-dominated flows is old and is in fact the origin of the Galerkin/least-
squares method [5]. Extensions of this method to the transient incompressible Navier–Stokes
equations are presented, for example, in References [6,7], among others.

Although the flexibility, generality and sound theoretical foundations of finite element
methods (FEMs) applied to fluid flow have been widely acknowledged, they have been also
blamed for being difficult to implement, leading to time-consuming numerical codes. The
second objective of this paper is to present a non-standard implementation of the finite element
formulation presented herein. After computing the volume integrals of the products of the
shape functions and its derivatives, the system matrix and force vector of the resulting
algebraic system are obtained from them. This is done at each iteration and at each time step,
without the need to recompute volume integrals any more. However, some approximations are
required to do this. These approximations and their implications are described in this paper.

Whereas for a standard finite element implementation, the normal flow of the calculation
involves a loop over the elements, the calculation of the element contributions (to the system
matrix and to the force vector) and the assembly of these into the global arrays, the flow of
the calculations for the algorithm presented here is very different. The system matrix is formed
of block matrices corresponding to the nodal points that can be obtained directly, without any
reference to the elements. This is done by looping over the nodes of the finite element mesh
and then over the nodes connected to a given nodal point. This involves the storage of the
graph of the mesh, as well as the graph of the boundary mesh when the contributions from the
boundaries need to be accounted for. It has to be stressed that, in principle, this approach is
independent of the element type, and it is not restricted to linear simplicial elements as the
edge-based implementations described, for example, in References [8–10].

The nodal-based implementation of the finite element formulation necessitates some approx-
imations. First of all, all the variables need to be defined at each nodal point and the integrals
where they appear have to be computed making use of their nodal values only. This is in
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particular true for the stabilization parameters of the formulation. Whereas taking them as
constant over each element leads unnoticeably to the consistency and the conservativity of the
formulation, these two properties might be lost when the stabilization parameters are consid-
ered to vary continuously through the interpolation of their nodal values.

The paper is organized as follows. In the following section, the general problem for a
thermally coupled incompressible fluid is presented. The numerical approximation is discussed
in Section 3, which includes a simple time discretization, the linearization of the equations and
the finite element approximation using a stabilized formulation. Section 4 presents the
nodal-based implementation of this formulation, including the approximations needed, a
discussion about the consistency and conservativity of the scheme, a description of the way to
store the mesh and boundary graphs and the final algorithm itself. Numerical examples are
presented in Section 5. They have been chosen as representative of the approximations
involved in the scheme. Results turn out to be very similar to those obtained using a standard
element-based implementation, but requiring much less CPU time.

2. PROBLEM STATEMENT

In this section we shall consider the flow problem for an incompressible fluid in a laminar
regime and taking into account several physical effects. These include the fact that the
reference frame where the computational domain is attached varies in time, the coupling of the
Navier–Stokes equations with the heat transport equation through the Boussinesq assumption,
the permeability of the medium where the fluid flows, and a generalized Newtonian behaviour
of this fluid, allowing its viscosity to depend on the invariants of the strain rate tensor.

The equations describing the problem are

(tu+ (u ·9)u+2v×u−29 · [no(u)]+9p+su+bgq= f (1)

9 ·u=0 (2)

(tq+ (u ·9)q−9 ·(k9q)=S (3)

to be solved in V× (0, tfin), where V¦R
nsd (nsd=2 or 3 being the space dimension) is the

computational domain and [0, tfin] is the time interval to be considered. In Equations (1)–(3),
u denotes the velocity field, p is the kinematic pressure (i.e. the pressure divided by the density),
q is the temperature, n is the kinematic viscosity, which may depend on the invariants of the
symmetrical part of the velocity gradient o(u), v is the velocity of rotation of the frame of
reference (and thus 2v×u is the Coriolis force), s is the inverse of the permeability of the
medium, b is the thermal expansion coefficient, g is the gravity acceleration vector, f is the
vector of body forces, k is the thermal diffusivity (i.e. the thermal conductivity divided by the
heat capacity) and S is the heat source. The density r0 is assumed constant to obtain
Equations (1)–(3).

In the most general case, the force vector f in Equation (1) contains the acceleration terms
coming from the temporal variation of the reference basis and the reference buoyancy forces
from the Boussinesq assumption, i.e.
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f=g(1+bq0)−afr−v; ×x−v× (v×x) (4)

In this equation, q0 is the reference temperature from which buoyancy forces are computed, afr

is the acceleration of the frame of the reference measured from an inertial system and
expressed in the moving reference and v; is the time derivative of v. The vector of position in
this moving reference has been denoted by x= (x1, x2, x3) (x, y, z) in the three-dimensional
case. Here and below, a Cartesian co-ordinate system is assumed.

The rheological behaviour that will be assumed for the fluid in one of the numerical
examples is the power law, which is perhaps the most common constitutive equation for
generalized Newtonian fluids. The expression of this law is

n=r0
−1K0[4I2(o)](n−1)/2 (5)

Here, K0 and n are physical constants (K0 is the material consistency and n is the rate
sensitivity) and I2(o) is the second invariant of the strain rate tensor, I2(o)�o :o/2, the colon
standing for the double contraction of second-order tensors.

The reasons for considering such a variety of physical phenomena in the model are given
now. Firstly, Coriolis forces and permeability effects have been introduced only because of
generality. When they dominate, numerical oscillations may appear; global for the former,
reduced to boundary layers for the latter. The stabilized method presented here allows their
removal as it was shown in Reference [3].

The nodal-based implementation described later on is based on a particular way of writing
the convective terms in the Navier–Stokes and the heat equation. In order to see the effect on
both, it is interesting to solve thermally coupled flows.

Finally, the possibility of dealing with non-linear materials will be used to demonstrate the
effect of another approximation that will be done for the viscous term. This is especially
relevant not only in the case of a non-Newtonian behaviour of the fluid, but also in the case
of turbulent flows. The most common turbulent models make use of the Boussinesq assump-
tion, which leads to the introduction of an additional viscosity to be added to the physical one.
This turbulent viscosity varies from point to point according to the law that the turbulence
model being employed determines. Non-linear fluids as those considered in this paper can be
considered as representative of fluids with non-constant viscosity.

In order to write the boundary conditions for Equations (1)–(3), consider the boundary
G=(V split into two sets of disjoint components as G=Gdv@Gnv and also as G=Gdt@Gnt,
where Gdv and Gdt are the parts of the boundary with Dirichlet type boundary conditions for
the velocity and the temperature respectively, and Gnv and Gnt are those where Neumann type
conditions are prescribed. If the Cauchy stress tensor (divided by the density) is written as

s= −pI+2no(u) and prescribed values are represented by an overbar, the boundary
conditions to be considered are

u(x, t)= ū(x, t) on Gdv (6)

n ·s(x, t)= t( (x, t) on Gnv (7)
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q(x, t)=q( (x, t) on Gdt (8)

kn ·9q(x, t)=h( (x, t) on Gnt (9)

for t� (0, tfin), where n is the unit normal to (V.
To close the problem, initial conditions have to be appended to Equations (1)–(3) and the

boundary conditions (6)–(9). They are of the form u(x, 0)=u0(x), q(x, 0)=q0(x) for x�V,
where u0(x) is a given initial velocity and q0(x) is a given initial temperature.

3. NUMERICAL APPROXIMATION

3.1. Time discrete weak form

Let us consider now the temporal discretization of Equations (1)–(3), for which we use the
generalized trapezoidal rule. Let 0= t0B t1B · · · B tN= tfin be a partition to the time interval
and a� [0, 1]. To simplify the notation, we shall take the time step size dt� tn+1− tn constant
for all n. Let us also introduce the notation

df n� f n+1− f n

f n+a�af n+1+ (1−a)f n

dtf
n�

df n

dt

where f is a generic continuous function of time and f n denotes the value of f at time tn or an
approximation to it (for simplicity we will assume that the force vector f and the heat source
S are continuous in time).

To introduce the weak form of the problem, let us consider the functional spaces

Vn+a={u(x)�H1(V)nsd�u= ūn+a on Gdv}

V0={u(x)�H1(V)nsd�u=0 on Gdv}

Q=
!

q(x)�L2(V)�&
V

q dV=0 if Gnv=¥
"

Cn+a={q(x)�H1(V)�q=q( n+a on Gdt}

C0={q(x)�H1(V)�q=0 on Gdt}

where, as usual, L2(V) denotes the space of square integrable functions in the domain V and
H1(V) the sub-space of L2(V) of functions with square integrable first derivatives.
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Once these functional spaces have been introduced, the weak form of the problem using the
generalized trapezoidal rule applied to Equations (1)–(3) reads as follows: from known un and

qn, find un+a�Vn+a, pn+1�Q and qn+a�Cn+a such that&
V
7 · [dtun+ (un+a ·9)un+a+2vn+a×un+a+sun+a+gbqn+a] dV

+
&

V
2o(7): nn+ao(un+a) dV−

&
V

pn+19 ·7 dV=
&

V
7 ·fn+a dV+

&
Gnv

7 ·t( n+a dG (10)

&
V

q9 ·un+a dV=0 (11)

&
V

c · [dtq
n+ (un+a ·9)qn+a] dV+

&
V

k9c ·9qn+a dV=
&

V
cS dV+

&
Gnt

chn+a dG (12)

for all test functions 7�V0, q�Q and c�C0.
The values of interest of the parameter a are a=1

2 and a=1, corresponding to the
Crank–Nicholson and the backward Euler schemes respectively. Both are unconditionally
stable, although the former is expected to be second-order accurate whereas only a first-order
approximation can be expected for the latter. Under certain regularity assumptions, this is
known to hold at least for the standard Galerkin method [11]; although no analysis is available
for the stabilized formulation presented below (see Reference [12] for a similar approach to the
transient problem for the convection–diffusion equation).

3.2. Linearized equations and iterati6e coupling

The final step previous to the finite element approximation of the non-linear variational
problem (10)–(12) is to linearize it. In the present case, there are two sources of non-linearity,
namely, the convective term of the Navier–Stokes and the heat equations, and the fact that the
viscosity depends in a non-linear way on the viscosity through a non-Newtonian constitutive
model.

Let us denote with the superscript i the iteration counter. Given an approximation un+a,i to
un+a, the linearization of the convective term of the Navier–Stokes equations that we consider
is

(un+a,i+1 ·9)un+a,i+1: (un+a,i ·9)un+a,i+1+l1[(un+a,i+1 ·9)un+a,i− (un+a,i ·9)un+a,i]
(13)

where l1=0 corresponds to the Picard method and l1=1 corresponds to the Newton–Raph-
son scheme.

The linearization of the constitutive model (5) is not as easy as that of the convective term.
In fact, the expression of the viscosity in terms of the velocity in this case is not even
differentiable. In such a situation, the simplest way to deal with the constitutive non-linearity
is to use a Picard-like strategy, taking the viscosity evaluated with the velocity un+a,i when
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un+a,i+1 is to be computed. Of course only a linear convergence rate can be expected if this
is done, and the use of Newton’s scheme for the convective terms seems unless. However, this
depends on the relative importance of the non-linearities coming from the convective and the
viscous terms. In some situations where the influence of the constitutive law is small and the
flow is governed by convection, we have found useful to use l1=1 in Equation (13), even
though the simple fixed-point scheme is used for the viscosity.

The convective term in the heat equation is another non-linearity of the problem. However,
instead of linearizing this term and dealing with the fully coupled problem, with velocity,
pressure and temperature as unknowns, we shall use an iterative coupling, as described, for
example, in Reference [13]. The idea is to use the temperature known from the previous
iteration in the momentum equation (10), and then use this equation and Equation (11) to
compute the velocity and the pressure. With the velocity computed, we can proceed to solve
the heat transport equation. Again, only a linear convergence rate can be expected for this
iterative scheme. However, if the non-linear term of the momentum equation drives the
iterative scheme, it can be useful to use l1=1 in Equation (13).

Having the previous considerations in mind, the fully linearized form of problem (10)–(12),
coupling iteratively the heat equation to the momentum and incompressibility equations, is as
follows: given a guess un+a,i for un+a and qn+a,i for qn+a, find un+a,i+1�Vn+a, pn+1,i+1�Q
and qn+a,i+1�Cn+a, such that

&
V
7 ·{dtun,i+1+2vn+a×un+a,i+1+sun+a,i+1+gbqn+a,i+ (un+a,i ·9)un+a,i+1

+l1[(un+a,i+1 ·9)un+a,i− (un+a,i ·9)un+a,i]} dV+
&

V
2o(7): nn+a,io(un+a,i+1) dV

−
&

V
pn+1,i+19 ·7 dV=

&
V
7 ·fn+a dV+

&
Gnv

7 ·t( n+a dG (14)

&
V

q9 ·un+a,i+1 dV=0 (15)

&
V

c [dtq
n,i+1+ (un+a,i+1 ·9)qn+a,i+1] dV+

&
V

k9c ·9qn+a,i+1 dV

=
&

V
cSn+a,i+1 dV+

&
Gnt

chn+a dG (16)

for all test functions 7�V0, q�Q and c�C0. Here, nn+a,i means that the viscosity is evaluated
with un+a,i, whereas Sn+a,i+1 is evaluated with un+a,i+1 (S can depend on u through Joule’s
effect, for instance). Likewise,

dun,i+1

dt
=

1
adt

(un+a,i+1−un)
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After problem (14)–(16) has been solved, convergence needs to be checked and, if not
achieved, set i� i+1 and solve this problem again.

3.3. Finite element approximation

We are now in a position to undertake the finite element approximation of the linear
variational problem (14)–(16). In order to discretize it in space, let {Ve} be a finite element
partition of the domain V, with index e ranging from 1 to the number of elements nel. We
denote with a subscript h the finite element approximation to the unknown functions, and by
7h, qh and ch the velocity, pressure and temperature test functions associated to {Ve}.

The finite element approximation to the functional spaces where the unknowns and the test
functions belong are also characterized by a subscript h. A very important point is that we are
interested in using equal interpolation for all the unknowns (velocity, pressure and temperature).
Therefore, all the finite element spaces are assumed to be built-up using the standard
continuous interpolation functions.

In order to overcome the numerical problems of the standard Galerkin method, a stabilized
finite element formulation to solve (14)–(16) is applied. This formulation is presented in
Reference [2] for the general case of systems of convection–diffusion–reaction equations, and
applied to the incompressible Navier–Stokes equations in Reference [3], where its convergence
properties for the linearized problem are analysed. The bottom line of the method is to test the
continuous equations by the standard Galerkin test functions plus perturbations that depend
on the operator representing the differential equation being solved. In our case, this operator
corresponds to the linearized form of the time discrete Navier–Stokes equations and the heat
equation. In this case, the method consists of finding uh

n+a,i+1�Vh
n+a, ph

n+1,i+1�Qh and
qh

n+a,i+1�Ch
n+a, such that

&
V
7h ·ru1

n+a,i+1 dV+
&

V
2o(7h): nn+a,io(uh

n+a,i+1) dV−
&

V
ph

n+a,i+19 ·7h dV

+ %
nel

e=1

&
Ve

zu1
n+a,i ·(ru1

n+a,i+1+ru2
n+a,i+1) dV+ %

nel

e=1

&
Ve

zu2
n+a,irp

n+a,i+1 dV

= %
nel

e=1

&
Ve

(7h+zu1
n+a,i) ·fn+a dV+

&
Gnv

7h ·t( n+a dG (17)

&
V

qhrp
n+a,i+1 dV+ %

nel

e=1

&
Ve

zp
n+a,i ·(ru1

n+a,i+1+ru2
n+a,i+1) dV= %

nel

e=1

&
Ve

zp
n+a,i ·fn+a dV

(18)

&
V

chrq1
n+a,i+1 dV+

&
V

k9ch ·9qh
n+a,i+1 dV+ %

nel

e=1

&
Ve

zp
n+a,i(rq1

n+a,i+1+rq2
n+a,i+1) dV

= %
nel

e=1

&
Ve

(ch+zq
n+a,i)Sn+a,i+1 dV+

&
Gnt

chhn+a dG (19)

for all test functions 7h�V0,h, qh�Qh and ch�C0,h, where
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ru1
n+a,i+1�dtuh

n,i+1+2vn+a×uh
n+a,i+1+suh

n+a,i+1+gbqh
n+a,i+ (uh

n+a,i ·9)uh
n+a,i+1

+l1[(uh
n+a,i+1 ·9)uh

n+a,i− (uh
n+a,i ·9)uh

n+a,i] (20)

ru2
n+a,i+1�−29 · [nn+a,io(uh

n+a,i+1)]+9ph
n+1,i+1 (21)

rp
n+a,i+1�eph

n+1,i+1−l2eph
n+1,i+9 ·uh

n+a,i+1 (22)

rq1
n+a,i+1�dtqh

n,i+1+ (uh
n+a,i+1 ·9)qh

n+a,i+1 (23)

rq2
n+a,i+1�−9(k ·9qh

n+a,i+1) (24)

the functions zu1, zu2 and zp are computed within each element as

zu1=tu{(uh ·9)7h+2v×7h−s7h+29 · [no(7h)]} (25)

zu2=tp9 ·7h (26)

zp=tu9qh (27)

zq=tq [(uh ·9)ch+9 ·(k9ch)] (28)

and the parameters tu, tp and tq are also computed elementwise as [3,14]

tu=
�4n

h2+
2�uh �

h
+ �v �+s

n−1

(29)

tp=4n+2�uh �h+ �v �h2+sh2 (30)

tq=
�4k

h2 +
2�uh �

h
n−1

(31)

where h is the element size for linear elements and half of it for quadratics.
There are several remarks to be made to the previous equations.

Remark 1
It is observed that Equations (21) and (24) (the terms of the original differential equations
integrated by parts in the weak form of the problem) involve second derivatives of the
unknowns. This is why the integrals involving these terms have to be evaluated element by
element. 

Remark 2
The term (21) also involves derivatives of the viscosity, in the case in which it is variable. These
are very difficult to incorporate in the formulation, although in the next section it is discussed
how to deal with the viscosity variation in the nodal-based implementation presented
there. 
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Remark 3
In Equation (22) we have introduced a parameter e that corresponds to a penalty parameter
for the incompressibility constraint. When l2=0, the penalty strategy can be considered the
‘classical’ one. On the other hand, when l2=1 it is seen from Equation (22) that the effect of
the penalization disappears when convergence is achieved. This iterati6e penalty method is
discussed and analysed in Reference [15]. The benefit of taking l2=1 is that larger values of
e may be used with a good approximation of the incompressibility constraint. The use of
penalty methods is very useful when pressures are discontinuous, since they can be eliminated
at the element level. When continuous pressures are used, they may help to improve the
convergence of the iterative methods if they are used to solve the algebraic system of
equations. 

Remark 4
In expressions (25)–(31) the velocity uh, the speed of rotation v and the viscosity n are
evaluated at the step and iteration indicated in (17)–(24). 

Remark 5
It is observed from (25)–(28) that these terms are precisely the adjoints of the (linearized)
operators of the differential equations to be solved applied to the test functions (observe the
signs of the viscous and permeability terms in Equation (25) and of the diffusive term in
Equation (28)). This method corresponds to the algebraic version of the sub-grid scale
approach [1,2] and circumvents all the stability problems of the Galerkin method. In
particular, in this case it is possible to use equal velocity–pressure interpolations, i.e. we are
not tight to the satisfaction of the inf–sup stability condition. 

4. NODAL-BASED IMPLEMENTATION

4.1. Moti6ation

In this section, the second objective of this paper is attempted, i.e. to present a nodal-based
finite element implementation of the stabilized finite element formulation presented in the
previous section.

Let npts be the total number of nodes of the finite element mesh and let Na be the shape
function (i.e. the standard finite element interpolation function) associated with node a ;
a=1, . . . , npts. From now on, superscripts a and b will refer to the nodes of the mesh.

To obtain the algebraic version of problem (17)–(19), the standard procedure is to
interpolate the unknowns as

uh,i= %
npts

a=1

NaUi
a, i=1, . . . , nsd

ph= %
npts

a=1

NaPi
a
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qh= %
npts

a=1

NaUa

where upper characters U, P and U are used to denote the nodal values of the corresponding
lower case variables (at the time step and iteration of interest). The test functions are then
taken as 6h,i=Nbdik for k=1, . . . , nsd (dik being the Kronecker delta), qh=Nb and ch=Nb,
b=1, . . . , npts. After the boundary conditions of Dirichlet type are prescribed, this leads to an
algebraic system of equations the solution of which yields the nodal unknowns. The matrix of
this algebraic system changes from time step to time step and from iteration to iteration due
to three reasons: the convective term, the viscous term and the stabilization parameters given
in Equations (29)–(31). All these terms depend on the velocity, and hence on the iteration and
time step. The former dependence could be avoided by treating explicitly in time these terms,
but this would be at the expense of loosing stability of the time integration.

The time consuming task in the calculation of the matrix of the algebraic system (tradition-
ally referred to as ‘stiffness matrix’) is the numerical integration involved. However, it is
possible to introduce some approximations that allow the expression of all the integral in terms
of &

V
NaNb dV

&
V

Na(iN
b dV,

&
V
(iN

aNb dV, i=1, . . . , nsd

&
V
(iNa(jNb dV, i, j=1, . . . , nsd (32)

for a, b=1, . . . , npts, and, if the second derivatives of the shape functions within an element
are not zero (or negligible), also in terms of

%
nel

e=1

&
Ve

NaDNb dV, %
nel

e=1

&
Ve

DNaNb dV

%
nel

e=1

&
Ve

DNa(iNb dV, %
nel

e=1

&
Ve

(iNaDNb dV, i=1, . . . , nsd

%
nel

e=1

&
Ve

DNaDNb dV (33)

for a, b=1, . . . , npts. In the previous expressions, (i denotes the partial derivative with respect
to the ith Cartesian co-ordinate, and D is the Laplacian operator. For fixed domains V, all the
integrals in Equations (32) and (33) can be computed at the beginning of the run and stored.

At this point there are two questions to be treated. This first is which are the approximations
needed to be really able to use only Equations (32) and (33) to build up the matrix of the
algebraic system. This is the subject of Sections 4.2 and 4.3.
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The second question is how to store the integrals in Equations (32) and (33). The efficiency
of the overall implementation depends on how efficient the storage scheme is. Let us only
mention that the technique adopted in this work is to use a compressed sparse row (CSR)
format to store the npts×npts matrix of the graph associated to the finite element mesh.

4.2. Approximation of the 6iscous and con6ecti6e terms

As it has been mentioned before, the convective and the viscous terms (when the viscosity
depends on the velocity) need to be recomputed at each iteration of each time step. However,
it is possible to approximate these two terms so that they can be computed with the integrals
appearing in (32).

4.2.1. Con6ecti6e term. Let us begin with the convective term in Equation (17) and assuming
for simplicity a Picard linearization, i.e. l1=0. The terms appearing when l1=1, as well as the
convective term in the discrete heat equation (19), can be dealt with in a similar way.

Let ahuh
n+a,i and uhuh

n+a,i+1. When the velocity test function is taken such that
6h,i=Nbdik, with k fixed (k=1, . . . , nsd), the convective term is

&
V
7h · [(ah ·9)uh ] dV= %

nsd

j=1

�&
V

Nbah, j(jNa dV
�

Uk
a (34)

The need for an additional approximation arises because of the function ah,j appearing within
the integrals. Calling Aj

a the nodal values of this function, the approximation that is proposed
here is

%
nsd

j=1

�&
V

Nbah, j(jN
a dV

�
: %

nsd

j=1

Aj
c�&

V
Nb(jN

a dV
�

(35)

where c=b or c=a. In any case, the convective term will be expressed in terms of the integrals
of Equations (32), as desired. The reasons for one choice or the other are discussed next.

Choice c=b in (35). Suppose that there exists a nodal integration rule of order nint. The
integration points are then the nodes of the mesh, of co-ordinates xg, g=1, . . . , npts. The
associated weights for the eth element are denoted We

g and the number of nodes per element
by nnod (the same superscript g is used for the numbering of the element nodes). Interpolating
the velocity components in the left-hand side of (35) and using the fact that Na(xb)=dab, we
have

%
nsd

j=1

�&
V

Nbah, j(jNa dV
�

= %
nsd

j=1

%
npts

c=1

Aj
c�&

V
NbNc(jNa dV

�
= %

nsd

j=1

%
npts

c=1

Aj
c� %

nel

e=1

%
nnod

g=1

We
gdbgd cg(jNa(xg)�Ve

�
+O(hnint)
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= %
nsd

j=1

Aj
b� %

nel

e=1

We
b(jN

a(xb)�Ve

�
+O(hnint)

= %
nsd

j=1

Aj
b�&

V
Nb(jN

a dV
�

+O(hnint) (36)

which justifies the use of (35) with c=b. It is seen that the error is O(hnint). It is known that
the nodal numerical integration is of order nint=p+1, where p is the order of the standard
Lagrange interpolation. Therefore, the error of approximation (35) is the same as the order of
the finite element interpolation when c=b. However, the argument used to arrive to this
conclusion is not valid for the stabilization term, whereas the following can also be applied in
this case, as will be shown later.

Choice c=a in (35). Since ah is approximately divergence free, we can approximate

&
V
7h · [(ah ·9)uh ] dV:

&
V
7h · [9 ·(ah�uh)] dV (37)

In fact, it is not necessary to consider this as an approximation, since the convective term of
the original continuous equations could have been written directly as 9 ·(u�u) rather than
(u ·9)u. What is definitely an approximations to interpolate the product ah�uh instead of each
of the components separately. Doing this when 6h,i=Nbdik yields

%
nsd

i, j=1

&
V
6h,i(j(ah, juh,i)dV: %

nsd

j=1

&
V

Nb(j
� %

npts

a=1

NaAj
aUk

a� dV= %
nsd

j=1

%
npts

a=1

Aj
a�&

V
Nb(jNa dV

�
Uk

a

(38)

which justifies (35) for c=a. The performance of this approximation, as well of the following,
will be checked through numerical experiments. However, it can be anticipated that a certain
loss of accuracy can occur, since piecewise polynomial solutions of order p will not anymore
be a solution of the discrete problem when elements of order p are used, since for such
solutions u�u is a polynomial of order 2p.

4.2.2. Viscous term. Let us consider now the approximation of the viscous term in Equation
(17). When 6h,i=Nbdik, with k fixed, this term is

2
&

V
o(7h): no(uh) dV= %

nsd

i, j=1

&
V

n(i6h, j((iuh, j+(juh,i) dV= %
nsd

i=1

&
Vb

n(iN
b((iuh,k+(kuh,i) dV

(39)

where Vb is the interior of the support of Nb, i.e. the union of the domains of the elements to
which node b belongs. To see how these integrals can be approximated, let f and g be two
given functions, both bounded and the former with bounded derivatives. Expanding f in
Taylor series, the integral of their product in a domain V0 is

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 737–766



R. CODINA750

&
V0

fg dV= f(x̄)
&

V0

g dV+ %
nsd

i=1

(i f �x̄ &
V0

(xi− x̄i)g dV

+
1
2

%
nsd

i, j=1

(i(j f �x̄ &
V0

(xi− x̄i)(xj− x̄j)g dV+ · · ·

If d is the diameter of V0 and meas(V0) its measure, we see that

&
V0

fg dV= f(x̄)
&

V0

g dV+O(dm meas(V0)) (40)

where m=2 if x̄ is the centre of mass of V0 with ‘density’ g and m=1 otherwise. The idea is
now to apply this to the integrals in (39), with fn and g(iNb((iuh,k+(kuh,i). Obviously, it
would be desirable to know the centre of mass of Vb, with density function g, which is
unknown. What is proposed here is to take n in Equation (39) as constant and equal to its
value nb at node b. Doing this and interpolating the velocity yields

%
nsd

i=1

&
Vb

n(iN
b((iuh,k+(kuh,i) dV: %

nsd

i=1

nb &
Vb

(iN
b((iuh,k+(kuh,i) dV

= %
nsd

i=1

%
npts

a=1

�
nb�&

V
(iNb(iNa dV

�
Uk

a

+nb�&
V
(iNb(kNa dV

�
Ui

an (41)

Again, this expression involves only the integrals in (32).
The way to evaluate nb is not absolutely clear. For constitutive laws such as (5), the viscosity

depends on the velocity gradients, which are discontinuous for standard C0 finite element
interpolations. In order to obtain nodal values of these velocity gradients, we use a standard
least-square smoothing from the elementwise values. If Gij

a, a=1, . . . , npts, are the nodal values
of (iuh, j, i, j=1, . . . , nsd, these are the solution of the linear system

%
npts

a=1

�&
V

NbNa dV,
�

Gij
a = %

npts

a=1

�&
V

Nb(iN
a dV,

�
Uj

a, b=1, . . . , npts (42)

which only involves the integrals in (32). Moreover, to avoid the need for solving (42), we use
a nodal numerical integration rule to compute the integral of the left-hand side, yielding a
diagonal ‘mass’ matrix. Also, since for quadratic elements there are weights which are zero,
they are replaced by those corresponding to the splitting of the quadratic elements into a
number of linear elements.
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Remark 6
Since

&
V
(iNb(iNa dV=

&
VbSVa

(iNb(iNa dV (43)

it is tempting to evaluate the viscosity at a point in VbSVa, not necessarily node b. However,
if n depends also on node a, the second equality in (41) does not hold and the viscous term
would be wrongly approximated, since for ‘exact’ nodal values Uk

a the discrete variational
equation (17) would not be satisfied. This can be understood as a lack of ‘consistency’ of the
numerical formulation. In practice, what we have observed is a completely oscillating be-
haviour of the iterative scheme, leading to converged solutions only for mild non-
linearities. 

4.3. Nodal stabilization parameters: consistency and conser6ation

The last point that needs to be analysed is the way in which the stabilization terms appearing
in (17)–(19) can be approximated to achieve the goal of using only the integrals in (32) and
(33) in the implementation. For the purpose of this section, it suffices to consider the
stationary problem with v=0 and s=0. Also, l1=l2=0 are taken. Likewise, attention shall
be focused on the Navier–Stokes equations, although the same ideas can be applied to the heat
equation.

As before, let ah be the velocity of the previous iteration and uh the velocity field that needs
to be computed. The first approximation to be considered refers to the viscous term of the
element residual in (17). Using the fact that the exact velocity is divergence free, the
approximation

29 · [no(uh)]�Ve:nDuh �Ve+29n ·o(uh)�Ve (44)

avoids the need for computing and storing all the second derivatives of the shape functions,
and only their Laplacian needs to be dealt with. Observe that this does not affect the natural
boundary conditions associated with the discrete weak problem, since it is used only for the
elementwise evaluation of the viscous term. To simplify the calculations, the second term in
(44) is evaluated at the previous iteration, computing nodal values for it by using a
least-squares smoothing for the viscosity gradients and the velocity gradients as in (42). These
nodal values are then added to those of the external force f, which is considered to account for
them in the following.

Using approximation (44) and considering the simplified situation described above, the
discrete problem to be solved is

&
V
7h · [(ah ·9)uh ] dV+2

&
V

o(7h): no(uh) dV−
&

V
ph9 ·7h dV+Smom,1(7h ; uh, ph)

+Smom,2(7h ; uh)=Rmom(7h) (45)
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e
&

V
phqh dV+

&
V

qh9 ·uh+Scont(qh ; uh, ph)=Rcont(qh) (46)

where the right-hand side terms Rmom(7h) and Rcont(qh) come from the force vector (4) and the
surface traction in (7)

Rmom(7h)�
&

V
7h ·f dV+

&
Gn6

7h ·t( dG+ %
nel

e=1

&
Ve

tu [(ah ·9)7h+nD7h ] ·f dV

Rcont(qh)� %
nel

e=1

&
Ve

tu9qh ·f dV

and the stabilization terms are given by

Smom,1(7h ; uh, ph)= %
nel

e=1

&
Ve

tu [(ah ·9)7h+nD7h ] · [(ah ·9)uh−nDuh+9ph ] dV (47)

Smom,2(7h ; uh)= %
nel

e=1

&
Ve

tp(9 ·7h)(9 ·uh) dV (48)

Scont(qh ; uh, ph)= %
nel

e=1

&
Ve

tu9qh · [(ah ·9)uh−nDuh+9ph ] dV (49)

where the stabilization parameters tu and tp are given by (29) and (30) respectively.
Suppose for a moment that Gnv=(V, i.e. all the boundary conditions are of Neumann type

(case in which the solution would not be unique) and that we can take the test function 7h
constant. Assuming that ah is divergence free (or using expression (37) for the convective term)
equations (45)–(46) imply in this case

&
(V

(n ·ah)uh dV=
&

V
f dV+

&
(V

t( dG (50)

e
&

V
ph dV+

&
(V

n ·uh dG=0 (51)

which can be understood as global conservation statements for the momentum and the mass
of the fluid contained in the domain V. It is in this sense that the finite element method can
be considered as ‘conservative’.

However, Equations (45) and (46) are not enforced for constant test functions 7h and qh, but
only for test functions of the form 7h=Nbek and qh=Nb, b=1, . . . , nsd, where ek is the unit
vector along the xk co-ordinate. Since the addition of all the shape functions Nb is 1, Equations
(50) and (51) can also be obtained by adding up, for b=1 to b=npts, Equation (45) enforced
for 7h=Nbek and also (46) enforced for qh=Nb, provided that
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%
npts

b=1

Smom,1(Nbek ; uh, ph)=0 (52)

%
npts

b=1

Smom,2(Nbek ; uh)=0 (53)

%
npts

b=1

Scont(Nb; uh, ph)=0 (54)

These equations can be considered as the sufficient conditions for the stabilized finite element
method to be conser6ati6e (see Reference [14] for further discussion).

In a standard implementation of the formulation, the stabilization parameters are computed
depending only on the element and not on the test functions being used in (47)–(49). However,
the idea of the nodal-based implementation presented here is to use nodal values for all the
parameters of the formulation and in particular for tu and tp. It can be readily observed from
(47)–(49) for 7h=Nbek that conditions (52)–(54) will not hold if tu and tp depend on b. If this
happens it is impossible to assess that the numerical formulation is conservative.

Of special interest is what happens to the continuity equation (46) when a penalty parameter
is used. Taking qh=Nb and adding up for all b yields

%
npts

b=1

%
nel

e=1

&
Ve

tu9uNb · [(ah ·9)uh−nDuh+9ph ] dV+e
&

V
ph dV+

&
(V

n ·uh dG=0

If tu is independent of b the first term is zero and thus the mean pressure value is zero when
so is the mass flux in the domain V. This is an interesting property of penalty methods that
does not hold when tu changes according to different values of b, since the first term is not
necessarily zero in this case. If the mass flux is zero (for instance, because of a Dirichlet
prescription for the velocity), the outcome is that the smaller the value of e is, the larger the
mean pressure value. This behaviour has been observed in numerical experiments.

Despite this lack of ‘conservation’, which has to be acknowledged, the stabilization
parameters tu and tp will be evaluated at node b when 7h=Nbek and when qh=Nb. The reason
for this is related to the consistency of the scheme, which is discussed next.

Let us consider the stabilization term (47). Taking 7h=Nbek and interpolating the velocity
and the pressure it is found that

Smom,1(Nbek ; uh, ph)= %
nel
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Pa (55)

The goal now is to make the convenient approximations to write this in terms of the
integrals in Equations (32)–(33). First of all, observe that the integrals involving the shape
functions of nodes a and b can be extended over VaSVb only, the intersection of the interior
of the supports of Na and Nb. Therefore, if approximation (40) is to be used, the functions
taken out of the integrals have to be evaluated either at node a or at node b, or a combination
of both. However, it is not a matter of choice. The only possibility to approximate (55) is to
take

� The velocity ah appearing in the element residual of the differential equation evaluated at
node a, and thus the ith component equal to the nodal value Ai

a. This corresponds to the
second approximation of the convective term discussed in the previous section, i.e.
Equation (35) with c=a. The reasons for this choice are still valid in this case, whereas the
argument for taking c=b is not valid any more, since now, for example, tu(ah,i(iN

b)(xa)
is not zero when b"a (see the derivation of Equation (36)).

� The velocity ah appearing in the operator applied to the test function evaluated at node b,
and thus the ith component equal to the nodal value Ai

b. This is needed for consistency
reasons, similar to those given in Remark 6: if ah depends also on node a, exact nodal
values of the velocity would not satisfy the discrete variational equations. However, the
same discussion concerning the choice of the stabilization parameters is applicable now: the
resulting numerical scheme will not be conservative.

� The viscosity evaluated at node b. This is also due to the consistency requirement discussed
in the previous section.

� The parameters tu and tp evaluated at node b. Even though this produces a non-conserva-
tion scheme, it is essential to have a consistent numerical method, in the sense that exact
solutions of the continuous problem should also be solutions of the discrete one, provided
they belong to the finite element space. The expressions we use for these parameters are (29)
and (30) (and obviously (31) when the heat equation is dealt with) taking uh as the nodal
velocity at node b, n the viscosity at this node and h as the minimum distance form node
b to the surrounding nodes.

Using all these approximations in (55) one finds

Smom,1(Nbek ; uh, ph)

: %
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� %
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a
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Once again, the objective of using only the integrals in (32)–(33) has been accomplished.

Remark 7
It is interesting to note that even when ah=0, the final algebraic system of equations will not
be symmetric if the stabilization parameters change from node to node. That is, if the mesh is
not uniform or the viscosity is variable. 

The way to treat the stabilization terms (48) and (49), and also the one coming from the
stabilization of the heat equation when this is solved, is exactly the same as for (47): the
stabilization parameters must be evaluated at the node associated to the test function being
used and the convective velocity and viscosity evaluated as explained above.

5. NUMERICAL EXAMPLES

In this section we present the results of some numerical examples obtained with the stabilized
finite element formulation proposed in this paper. Two types of conclusions can be drawn
from them. On the one hand, these examples serve to check the behaviour of the stabilized
formulation in situations more general than those in which it can be analysed [3]. These
situations include thermally driven flows, flows of non-linear materials and transient problems.
An example of each situation is presented.

On the other hand, these numerical examples also serve to compare the performance of the
standard element-based implementation of the stabilized formulation and the nodal-based one
presented in Section 4, which involves several additional approximations.

The last two examples are intended to demonstrate that the work developed in Section 4
‘makes sense’. Firstly, because the resulting numerical scheme is shown to be (almost)
optimally convergent in a numerical test, despite all the approximation needed to arrive to it,
and secondly because this scheme turns out to be very efficient, an attribute of which finite
element methods are usually blamed for lacking.

5.1. Thermally coupled flow in a ca6ity

In this example, the convective motion of a fluid enclosed in the square cavity [0, 1]× [0, 1] and
driven by a temperature gradient will be numerically analysed. The left vertical wall x=0 is
heated and maintained at a constant temperature q=1, while the right vertical wall x=1 is
kept at q=0. Horizontal walls are assumed to be adiabatic, i.e. boundary condition (9) with
h( =0 is prescribed. Homogeneous Dirichlet boundary conditions are prescribed everywhere on
the boundary for the velocity.
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Let L be a characteristic length of the problem and Gq a characteristic temperature gradient.
The Grashof number Gr and the Prandtl number Pr are defined as

Gr�
b �g �L3Gq

n2 , Pr�
n

k

Taking L=1 and Gq=1 in this case, the physical parameters have been adjusted to yield a
Prandtl number Pr=0.005 and a Grashof number Gr=3×106. For this combination of
values, there is a unique and stable stationary solution to the Navier–Stokes equations coupled
with the heat equation using the Boussinesq assumption [16]. Thus, the stationary version of
problem (1)–(3) is solved in this example. The gravity is assumed to point downwards.

The finite element mesh employed to discretize the problem, which is refined near the
boundaries, consists of 2684 bilinear (Q1) elements and 2809 nodal points. The Navier–Stokes
equations have been linearized up to first order, and the standard penalty method, with
e=10−6, has been used to fix the pressure mean to zero. The convergence tolerance has been
taken as 0.01 per cent in the relative L2 norm.

The velocity field is shown in Figure 1. These results are very similar using the standard
element-based implementation and the nodal-based one presented in this paper. As a sample,
a comparison is made in Figure 2, where the y-velocity section x=0.5 is shown. It is
important to remark that this example involves two of the approximations discussed in Section
4, namely those related to the convective term for both the Navier–Stokes and the heat
transport equations, and the approximations needed to deal with their stabilization terms.

Figure 1. Velocity vectors for Example 1.
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Figure 2. y-Velocity at x=0.5 for Example 1.

5.2. Flow o6er a cylinder

This example involves the flow past a cylinder, another widely solved benchmark problem. The
computational domain is V( = [0, 16]× [0, 8]¯D, with the cylinder D of diameter 1 and centred
at (4, 4). The velocity at x=0 is prescribed at (1, 0), whereas at y=0 and y=8, the y-velocity
component is prescribed at 0 and the x-component is left free. The outflow (where both the x-
and y-components are free) is x=16. The Reynolds number is 100, based on the cylinder and
the prescribed inflow velocity. The finite element mesh employed consists of 4000 linear
triangles, with 2100 nodal points, and is refined near the cylinder.

In order to obtain the fully developed vortex shedding characteristic of this problem, 90
times steps have been performed with dt=1 and a=0.5 (Crank–Nicholson scheme), employ-
ing for that the element-based implementation. The convergence tolerance within each time
step has been taken as 1 per cent (a single Picard iteration has been needed to converge). The
solution thus obtained shows a fully developed periodic flow pattern. These results have been
taken as the initial condition for a more accurate calculation, now computed with dt=0.1 and
requiring a convergence tolerance of 0.01 per cent in the relative L2 norm. Two or three
Newton–Raphson iterations have been performed for each time step, both for the element
based and the nodal based implementations of the formulation.

The period of the oscillations has been found to be 5.9 times units with both implementa-
tions. The values given in References [17,18] are 6.0 and 5.6 respectively. In Reference [19], the
period obtained with a very fine mesh (3426 Q2/P1 elements, 14000 nodal points) is 5.8 time
units. See also Reference [20] for results obtained using a similar stabilized formulation.

The streamline snapshot at t=10 is shown in Figure 3 (t=0 corresponds to the periodic
solution computed as described earlier with a higher tolerance and a higher time step size).
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Figure 3. Streamlines at t=10 for Example 2.

Figure 4. x-Velocity at y=4 and t=4 for Example 2.

The important point is the comparison of the results obtained with the element-based and
the nodal-based implementations. An example of this comparison is shown in Figures 4 and 5.
It is observed that there are only slight differences in the spatial amplitude of the oscillations.
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Figure 5. y-Velocity at y=4 and t=4 for Example 2.

5.3. Extrusion of a non-linear fluid

In this section we present some numerical results obtained for the well-known 4:1 plane
extrusion problem. This is a very popular test for non-Newtonian flows, since all the flow
features that characterize these fluids are present in this problem.

The computational domain in this case is [0, 20]× [0, 4]@ [20, 40]× [3, 4]. The inflow is the
section x=0, where the velocity field is prescribed to (6x(y), 0), where 6x(y) has a parabolic
profile with maximum 1 at y=4 and minimum 0 at y=0. The outflow x=40 is left free, i.e.
condition (7) with t( =0 is prescribed. On y=4 the velocity is set to (1, 0) and on the rest of
the boundary the non-slip condition is used.

The finite element mesh employed for the space discretization is composed of 2100 bilinear
(Q1) elements, with a total of 2201 nodal points. There are 15 elements in the y-direction from
co-ordinates y=3 to y=4 and only 12 from y=0 to y=3. The concentration of elements in
the former zone is needed if one wants to reproduce accurately the shear thinning effect of
fluids whose viscosity obeys the power law that we consider now, given by (5). Since the
effective viscosity values that result from this law are very high, the convective term of the
Navier–Stokes equations is neglected (the flow is assumed to be governed by creep), as well as
the buoyancy forces due to temperature (the flow is assumed to be thermally uncoupled).

The values of the physical constants that have been used are (all in SI units): r0=1200
(density), K0=106 (material consistency) and n=0.4 (rate sensitivity). For this value of n the
effect of the non-constant viscosity is pronounced. Since the expressions of the viscosity (5)
tends to infinity when I2(o) tends to zero, a cut-off value nc=1012 for n has been introduced.
The values of the viscosity for the converged solutions are always below this limit, except in
isolated points.

The streamlines for this problem are shown in Figure 6. As before, results are very similar
using the element-based and the nodal-based implementations. A comparison is made in
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Figure 6. Streamlines for Example 3.

Figure 7. x-Velocity at x=30 for Example 3.

Figures 7 and 8, where the x- and y-velocity components at x=30 and y=3.5 are shown. In
these figures the results obtained using a mesh of 525 biquadratic (Q2) elements with the same
set of nodes as the mesh of bilinear elements are also shown for the nodal-based implementa-
tion. It has to be remarked that the element based one did not converge using Q2 elements.

5.4. Con6ergence test

Let us consider now a two-dimensional steady state test with analytical solution to check the
behaviour in space of the finite element approximation to problem (1)–(3). We take V as the
unit square and the force term so that the exact solution is p=0 and u(x, y)= ( f(x)g %(y),
−f %(x)g(y)), with f(x)=x2(1−x)2 and g(y)=y2(1−y)2. This velocity field vanishes on (V.

As physical properties we have taken n=0.001 and different values of v= �v � and s. In
particular, results will be shown for s=0, 1000 and v=0, 1000. We have used three uniform
finite element meshes (meshes 1, 2 and 3) of 5×5, 10×10 and 20×20 biquadratic elements,
so that the element sizes are h=0.2, h=0.1 and h=0.05 respectively. The resulting values of
the element Reynolds number are not very high and for this particular example the standard
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Figure 8. y-Velocity at y=3.5 for Example 3.

Galerkin approach using a stable velocity–pressure pair, such as the Taylor–Hood element
Q2/Q1, works for meshes 2 and 3 in the absence of Coriolis force. However, when this force
exists, the Galerkin method yields completely oscillatory results all over the computational
domain (see Reference [3]).

In Figure 9 we have plotted the convergence of the velocities obtained with the stabilized
method as the mesh is refined in the l2 norm and for different combinations of the values of
s and v. This error is defined as

E=
� %

npts

a=1

%
nsd

i=1

(Ui
a−ui(xa))2n1/2� %

npts

a=1

%
nsd

i=1

(ui(xa))2n−1/2

where xa are the co-ordinate of the nodes.
The optimal convergence rate that should be expected is 3. From Figure 9 it is seen that this

is what is found for the element-based implementation. However, for the nodal-based one it is
slightly smaller when s=v=0 (it is approximately 2.6). This is due to the approximation
made for the convective term, which is the dominant one in this case.

A comparison of results for c=a and for c=b in (35) (and the corresponding approxima-
tion for the convective part of the stabilization term) is shown in Figure 10. It is seen there that
the choice c=a (employed also in Figure 9) gives better results than c=b. The convergence
rate obtained using a mesh of Q1 elements obtained by splitting each Q2 element into four is
also plotted in Figure 10 (using again c=a). In this case, convergence is optimal, with rate 2.
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Figure 9. Discrete l2 errors for Example 4 for different values of �v �v and ss for the element-based
(E-B) and nodal based (N-B) implementations.

5.5. Efficiency test

In this final example, the efficiency of the nodal-based implementation compared with the
element-based one is studied. For that, we considered the three-dimensional extension of the
previous example. The domain is the unit cube V( = [0, 1]× [0, 1]× [0, 1] and is discretized
using three meshes of P1, P2, Q1 and Q2 elements.

Figure 10. Discrete l2 errors for Example 4 for Q2 and Q1 elements using Aa or Ab in (35).
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The interest of this example is to compare the CPU time needed to construct the stiffness
matrix of the final linear system for the two implementations of the stabilized method.
Although this linear system has not been solved, the force term has been taken so as to obtain
as exact solution u(x, y, z)= (h(z)f(x)g %(y), −h(z)f %(x)g(y), 0), with f(x) and g(y) as in the
previous example and h(z)=z(1−z). Likewise, v= (1, 1, 1) and s=1000 have been used.

Results are shown in Table I where the meshes employed have been identified as follows: ‘t ’
corresponds to tetrahedral elements and ‘h’ to hexahedral, ‘l’ to linear and ‘q’ to quadratic
interpolations, and ‘1’, ‘2’, ‘3’ identify the number of nodes of the mesh. These meshes have
respectively 73, 133 and 253 nodal points, equally distributed.

For the case of tetrahedral linear elements (P1), i.e. for meshes tl1, tl2 and tl3, two
possibilities have been considered, namely, the use of four points to perform the numerical
integration (which corresponds to ‘full’ integration) and one point (which introduces an
important numerical integration error but is possible for this stationary problem). Obviously,
this does not affect the CPU time needed for the construction of the stiffness matrix in the
nodal-based implementation, since integrals are computed and stored at the beginning of the
calculations. Similarly, for tetrahedral quadratic elements (P2), both 11 points and four points
can be used for the numerical integration.

The results shown in Table I, obtained using a single SGI R10000 processor, show that the
nodal-based implementation is clearly much more efficient than the element-based one.
Obviously these results are dependent on the particular coding of the corresponding finite
element algorithm, but this can not affect the general tendency observed in Table I.

Let us consider now the memory storage required for both implementations. If the number
of nodal points is increased, the asymptotic number of resulting elements is nel= felenpts, where

Table I. Comparison of the CPU time needed to construct the stiffness matrix
in Example 5.

FactorNodal-basedElement-basedMesh

15.670.060.94tl1, four points
0.35 0.06tl1, one point 5.83

hl1 0.71 0.09 7.89
tq1, 11 points 0.87 0.10 8.70

4.300.100.43tq1, four points
hq1 2.48 0.21 11.81

tl2, four points 7.57 0.44 17.20
0.442.81 6.39tl2, one point

hl2 5.67 0.68 8.34
6.89 0.79 8.72tq2, 11 points

tq2, four points 3.44 0.79 4.35
hq2 19.98 1.87 10.64

tl3, four points 60.52 3.87 15.64
5.85tl3, one point 3.8722.65

hl3 44.60 6.14 7.26
tq3, 11 points 7.777.1055.19

3.827.1027.14tq3, four points
15.95hq3 165.04 10.35
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Table II. Comparison of the asymptotic number of coefficients needed to store
derivatives for the element-based implementation and integrals for the nodal-

based implementation.

fele Meb fconMesh Mnb

tl, four points 6 336 9 58.5
6 102tl, one point 9 58.5

hl 1 208 27 175.5
0.75 263.25 26.625 173.0625tq, 11 points
0.75 100.5tq, four points 26.625 173.0625
0.125 280.125 64 416hq

fele is a factor that depends on the element type. Similarly, if fcon is the average number of
nodes to which a node is connected, the number of non-zero coefficients of the mesh graph is
NZD= fconnpts. Let Mebnpts be the number of coefficient that need to be stored to compute the
stiffness matrix for the element based implementation and Mnbnpts for the nodal based one.
Assuming in both cases that no second derivatives need to be computed the coefficients Meb

and Mnb are

Meb= [(1 (element of volume)+nsdnnod (Cartesian derivatives))nint

+nnod (nodal convectivities)]fele

Mnb=0.5(1 (first integrals in (32))+nsd (second integrals in (32))

+nsdnsd (last integrals in (32)))fcon

Observe that in the expression Mnb we have taken into account the symmetries of the integrals
in (32) as well as the fact that&

(V
niNaNb dG=

&
V
(iNaNb dV+

&
V

Na(iNb dV, i=1, . . . , nsd

which allows us to store only one of the integrals in the second row of (32). Likewise, for the
element-based implementation the storage of the nodal convectivities has to be accounted for
whereas for the nodal-based one the mesh graph can be considered as part of the memory
needed to allocate the stiffness matrix of the problem.

The coefficients Meb and Mnb for the different types of meshes in terms of the factors fele

and fcon are given in Table II. It is observed there that the nodal-based implementation is less
memory demanding for lower-order interpolations and for fully integrated quadratic tetrahe-
dra, whereas the memory required is more than for the element-based implementation for
quadratic hexahedra.

6. CONCLUSIONS

Two different aspects related to the finite element approximation of the incompressible
Navier–Stokes equations have been treated in this paper. The first of them is the numerical
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formulation, which consists of a stabilized method able to deal with a very wide range of flows.
It has been shown that the method gives very good results for thermally driven flows,
non-Newtonian fluids and transient problems. Particular features of this stabilized formulation
are that it is based on multiplying the element residuals of the equations by the adjoint of the
linearized Navier–Stokes operator applied to the test functions, and also the design of the
stabilization parameters. Both ingredients allow to stabilize very different types of numerical
instabilities, namely those that are classical and arise in convection dominated flows and equal
velocity–pressure interpolations, and also the less studied cases of dominating Coriolis forces
and small medium permeabilities.

The good numerical performance of the stabilized finite element formulation is maintained
when the nodal-based implementation described here is used. The basic idea of this implemen-
tation is to characterize the topology of the finite element mesh by the matrix of its graph. The
arrays needed for it can be used also to store the integrals of the shape functions and shape
function derivative products, the corner stones of the implementations. All the arrays appear-
ing in the fully discrete problem can be expressed in terms of them after performing the
appropriate approximations. Numerical experiments show that the good numerical results due
to the stabilized formulation can be obtained in an efficient manner by means of this
implementation.
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